
User-defined types

• Type synonyms (typedefs in C)

 type Point = (Float, Float)
 type Path = [Point]

• Algebraic data types

‣ Combination of structs and unions

‣ together with pointers in C

 data Point2 = MkPoint2 Float Float

• Data types can be like structs in C (we call those data types product types)

 typedef struct {
 float x, y;
 } Point2;

The corresponding definition in C

fields are not named,

characterised by position

in the definition

this is called a
data constructor

Data Constructors

• Data constructors are a (special kind of) functions:

 data Point2 = MkPoint2 Float Float

 MkPoint2 :: Float -> Float -> Point2

 distFromZ:: Point2 -> Float
 distFromZ (MkPoint2 x y)
 = sqrt (x*x + y*y)

• Arguments to data constructors can always be recovered using pattern
matching:

Data Constructors

• We already know some other data constructors:

 (,) :: a -> b -> (a,b)
 fst (x, _) = x

 []:: [a]
 (:) :: a -> [a] -> [a]

 length [] = 0
 length (_ : xs) = 1 + length xs

 data Point2 = MkPoint2 Float Float

 point :: Point2
 point = MkPoint2 1.3 2.45

 typedef struct {
 float x, y;
 } Point2;

 Point2 point = {1.3, 2.45};
 // or
 Point2 point;
 point.x = 1.3;
 point.y = 2.45

 data Point2 = MkPoint2
 { xPoint :: Float
 , yPoint :: Float
 }

• Data types can be like structs in C (we call those data types product types)

 typedef struct {
 float x, y;
 } Point2;

The corresponding definition in C

fields are named,

characterised by position

in the definition and unique name

 data Point2 = MkPoint2
 { xPoint :: Float
 , yPoint :: Float
 }

 point :: Point2
 point = MkPoint2 1.3 2.45
 — or
 point = MkPoint2 {yPoint = 2.45, xPoint = 1.3}

 typedef struct {
 unsigned int x, y;
 } Point2;

 Point2 point = {1.3, 2.45};
 // or
 Point2 point;
 point.x = 1.3;
 point.y = 2.45

fields can also be named

 data Point2 = MkPoint2
 { xPoint :: Float
 , yPoint :: Float
 }

 — the above definition brings three functions
 — into scope:
 MkPoint2 :: Float -> Float -> Point2 — constructor
 xPoint :: Point2 -> Float — access function for x
 yPoint :: Point2 -> Float — access function for y

 — using pattern matching to access components
 distance :: Point2 -> Point2 -> Float
 distance (MkPoint2 x1 y1) (MkPoint2 x2 y2) =
 sqrt ((x2 - x1)^2 + (y2 - y1)^2)

 — using access functions
 distance p1 p2 =
 sqrt ((xPoint p2 - xPoint p1)^2 +
 (yPoint p2 - yPoint p1)^2)

• Problem: define a type to model shapes. A shape can be a rectangle
(position, width, height) or a circle (position, radius)

• Data types can be like unions in C (we call those data types sum types)

 data Shape = Rectangle Point Float Float
 | Circle Point Float

 enum tag {RECTANGLE_SHAPE, CIRCLE_SHAPE};
 struct mkRectangle {
 enum tag theTag;
 float height;
 float width;
 }
 struct mkCircle {
 enum tag theTag;
 point pos;
 radius float;
 }
 typedef union {
 struct mkCircle aCircle;
 struct mkRectangle aRectangle;
 } Shape;

The definition in C

• We call Haskell's data types also product-sum types

• They can be recursive as well

• In contrast to data types in C, but much like generics in Java and C#, Haskell
data types can be parameterised

 data Maybe a = Nothing | Just a

Type parameter

Product-Sum Types

Identifiers in Haskell

• Alphanumeric with underscores (_) and prime symbols (')

• Case matters

Functions & variables lower case map, pi, (+), (++)

Data constructors Upper case True, Nothing, (:)

Type variables lower case a, b, c, eltType

Type constructors Upper case Int, Bool, IO

Next Thursday: guest lecture

• Patrick Flanagan (Jane St, Hongkong)

• Thu, 15 March

