User-defined types

« Type synonyms (typedefs in C)

(Float, Float)
[Point]

type Point
type Path

 Algebraic data types

» Combination of structs and unions

» together with pointers in C




- Data types can be like structs in C (we call those data types product types)

data Point2 = MkP01n V. Float Float |

— e

fields are not named,

A characterised by position

, in the definition
this is called a R e e

data constructor

typedef sifu
float (x,)(
} Point?2




Data Constructors

- Data constructors are a (special kind of) functions:

data Point2 = MkPoint2 Float Float

MkPoint2 :: Float —> Float —> Point?2

* Arguments to data constructors can always be recovered using pattern
matching:

distFromZ:: Point2 —> Float
distFromZ (MkPoint2 x vy)
= sqrt (x%kx + yxy)




Data Constructors

« We already know some other data constructors:

(,) :: a—>b —> (a,b)

fst (x, ) = x

[1:: [a]

(:) :: a — [a] — [al

length [] = 0

length (_ : xs) =1 + length xs




data Point2 = MkPoint2 Float Float

point :: Point2
point = MkPoint2 1.3 2.45

typedef struct {
float x, vy;
} Point2;

Point2 point
// or

Point2 p01nt
point.x = 1.3;
point.y 2.45

{1.3, 2.45};




- Data types can be like structs in C (we call those data types product types)

data Point2 = MkPoint2
{ XPoint :: Float
, YPoint :: Float

}

fields are named,
characterised by position

in the definition and unigue name

tyDEdef StFUC"
float\
} Point2; . %




data Point2 = MkPoint2
{ xPoint :: Float
, YPoint :: Float

}

point :: Point2

point = MkPoint2 1.3 2.45
— or
point

fields can also be named
M

MkPoint2 {yPoint = 2.45, xPoint = 1.3}

typedef struct {
unsigned int x, vy;
} Point2;

Point2 point = {1.3, 2.45};
// or

Point2 point;

point.x = 1.3;

point.y = 2.45

AAAAAAAAAAAAAAAA



data Point2 = MkPoint2
{ xPoint :: Float
, YPoint :: Float

}

— the above definition brings three functions
— 1nto scope:

MkPoint2 :: Float —> Float —> Point?2 — constructor
xPoint :: Point2 —> Float - access function for x
yPoint :: Point2 —> Float - access function for y

— using pattern matching to access components

distance :: Point2 —-> Point2 —> Float

distance (MkPoint2 x1 y1) (MkPoint2 x2 y2) =
sqrt ((x2 — x1)72 + (y2 - y1)72)

— using access functions
distance pl p2 =
sqrt ((xPoint p2 - xPoint pl)7"2 +
(yPoint p2 - yPoint p1)~2)

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA



* Problem: define a type to model shapes. A shape can be a rectangle
(position, width, height) or a circle (position, radius)

- Data types can be like unions in C (we call those data types sum types)

data Shape = Rectangle Point Float Float
| Circle Point Float

enum tag {RECTANGLE_SHAPE, CIRCLE_SHAPE};
struct mkRectangle {
enum tag theTag; )
float height;
float width;

: initio
struct mkCircle { The defint
enum tag theTag; ————

point posS; [
radius float;
s

typedef union {
struct mkCircle aCircle;
struct mkRectangle aRectangle;
} Shape;




Product-Sum Types

« We call Haskell's data types also product-sum types
» They can be recursive as well

* In contrast to data types in C, but much like generics in Java and C#, Haskell
data types can be parameterised

Type parameter

Maybe a = Nothing Just a




|dentifiers in Haskell

 Alphanumeric with underscores (_) and prime symbols (')

« Case matters

Functions & variables lower case map, pi, (+), (++)
Data constructors Upper case True, Nothing, (:)
Type variables lower case a, b, c, eltType
Type constructors Upper case Int, Bool, IO




Next Thursday: guest lecture

- Patrick Flanagan (Jane St, Hongkong)

* Thu, 15 March

=l
L |
(8 e unive OF NEW SOUTH WALES

RSITY

YYYYYY e AUSTRALIA



